What Is Quantitative Research? | Definition, Uses & Methods

Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations.

Quantitative research is the opposite of qualitative research, which involves collecting and analyzing non-numerical data (e.g. text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

Quantitative research question examples
  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Continue reading: What Is Quantitative Research? | Definition, Uses & Methods

Data Collection | Definition, Methods & Examples

Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem.

While methods and aims may differ between fields, the overall process of data collection remains largely the same. Before you begin collecting data, you need to consider:

  • The aim of the research
  • The type of data that you will collect
  • The methods and procedures you will use to collect, store, and process the data

To collect high-quality data that is relevant to your purposes, follow these four steps.

Continue reading: Data Collection | Definition, Methods & Examples

Sampling Bias and How to Avoid It | Types & Examples

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others. It is also called ascertainment bias in medical fields.

Sampling bias limits the generalizability of findings because it is a threat to external validity, specifically population validity. In other words, findings from biased samples can only be generalized to populations that share characteristics with the sample.

Continue reading: Sampling Bias and How to Avoid It | Types & Examples

Population vs. Sample | Definitions, Differences & Examples

Population vs sample

A population is the entire group that you want to draw conclusions about.

A sample is the specific group that you will collect data from. The size of the sample is always less than the total size of the population.

In research, a population doesn’t always refer to people. It can mean a group containing elements of anything you want to study, such as objects, events, organizations, countries, species, organisms, etc.

Population vs sample
Population Sample
Advertisements for IT jobs in the Netherlands The top 50 search results for advertisements for IT jobs in the Netherlands on May 1, 2020
Songs from the Eurovision Song Contest Winning songs from the Eurovision Song Contest that were performed in English
Undergraduate students in the Netherlands 300 undergraduate students from three Dutch universities who volunteer for your psychology research study
All countries of the world Countries with published data available on birth rates and GDP since 2000

Continue reading: Population vs. Sample | Definitions, Differences & Examples

External Validity | Definition, Types, Threats & Examples

External validity is the extent to which you can generalize the findings of a study to other situations, people, settings and measures. In other words, can you apply the findings of your study to a broader context?

The aim of scientific research is to produce generalizable knowledge about the real world. Without high external validity, you cannot apply results from the laboratory to other people or the real world.

In qualitative studies, external validity is referred to as transferability.

Continue reading: External Validity | Definition, Types, Threats & Examples