## Types of Variables in Research & Statistics | Examples

In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design.

###### Example

If you want to test whether some plant species are more salt-tolerant than others, some key variables you might measure include the amount of salt you add to the water, the species of plants being studied, and variables related to plant health like growth and wilting.

You need to know which types of variables you are working with in order to choose appropriate statistical tests and interpret the results of your study.

You can usually identify the type of variable by asking two questions:

Continue reading: Types of Variables in Research & Statistics | Examples

## T-distribution: What it is and how to use it

The t-distribution, also known as Student’s t-distribution, is a way of describing data that follow a bell curve when plotted on a graph, with the greatest number of observations close to the mean and fewer observations in the tails.

It is a type of normal distribution used for smaller sample sizes, where the variance in the data is unknown.

In statistics, the t-distribution is most often used to:

Continue reading: T-distribution: What it is and how to use it

## Understanding Confidence Intervals | Easy Examples & Formulas

When you make an estimate in statistics, whether it is a summary statistic or a test statistic, there is always uncertainty around that estimate because the number is based on a sample of the population you are studying.

The confidence interval is the range of values that you expect your estimate to fall between a certain percentage of the time if you run your experiment again or re-sample the population in the same way.

The confidence level is the percentage of times you expect to reproduce an estimate between the upper and lower bounds of the confidence interval, and is set by the alpha value.

Continue reading: Understanding Confidence Intervals | Easy Examples & Formulas

## Test statistics | Definition, Interpretation, and Examples

The test statistic is a number calculated from a statistical test of a hypothesis. It shows how closely your observed data match the distribution expected under the null hypothesis of that statistical test.

The test statistic is used to calculate the p value of your results, helping to decide whether to reject your null hypothesis.

Continue reading: Test statistics | Definition, Interpretation, and Examples

## Understanding P values | Definition and Examples

The p value is a number, calculated from a statistical test, that describes how likely you are to have found a particular set of observations if the null hypothesis were true.

P values are used in hypothesis testing to help decide whether to reject the null hypothesis. The smaller the p value, the more likely you are to reject the null hypothesis.

Continue reading: Understanding P values | Definition and Examples

## Akaike Information Criterion | When & How to Use It (Example)

The Akaike information criterion (AIC) is a mathematical method for evaluating how well a model fits the data it was generated from. In statistics, AIC is used to compare different possible models and determine which one is the best fit for the data. AIC is calculated from:

• the number of independent variables used to build the model.
• the maximum likelihood estimate of the model (how well the model reproduces the data).

The best-fit model according to AIC is the one that explains the greatest amount of variation using the fewest possible independent variables.

Continue reading: Akaike Information Criterion | When & How to Use It (Example)

## Two-Way ANOVA | Examples & When To Use It

ANOVA (Analysis of Variance) is a statistical test used to analyze the difference between the means of more than two groups.

A two-way ANOVA is used to estimate how the mean of a quantitative variable changes according to the levels of two categorical variables. Use a two-way ANOVA when you want to know how two independent variables, in combination, affect a dependent variable.

Continue reading: Two-Way ANOVA | Examples & When To Use It

## One-way ANOVA | When and How to Use It (With Examples)

ANOVA, which stands for Analysis of Variance, is a statistical test used to analyze the difference between the means of more than two groups.

A one-way ANOVA uses one independent variable, while a two-way ANOVA uses two independent variables.

Continue reading: One-way ANOVA | When and How to Use It (With Examples)

## ANOVA in R | A Complete Step-by-Step Guide with Examples

ANOVA is a statistical test for estimating how a quantitative dependent variable changes according to the levels of one or more categorical independent variables. ANOVA tests whether there is a difference in means of the groups at each level of the independent variable.

The null hypothesis (H0) of the ANOVA is no difference in means, and the alternative hypothesis (Ha) is that the means are different from one another.

In this guide, we will walk you through the process of a one-way ANOVA (one independent variable) and a two-way ANOVA (two independent variables).

Our sample dataset contains observations from an imaginary study of the effects of fertilizer type and planting density on crop yield.

We will also include examples of how to perform and interpret a two-way ANOVA with an interaction term, and an ANOVA with a blocking variable.

Continue reading: ANOVA in R | A Complete Step-by-Step Guide with Examples

## Linear Regression in R | A Step-by-Step Guide & Examples

Linear regression is a regression model that uses a straight line to describe the relationship between variables. It finds the line of best fit through your data by searching for the value of the regression coefficient(s) that minimizes the total error of the model.

There are two main types of linear regression:

In this step-by-step guide, we will walk you through linear regression in R using two sample datasets.