Student's t Table (Free Download)  Guide & Examples
Student’s t table is a reference table that lists critical values of t. Student’s t table is also known as the t table, tdistribution table, tscore table, tvalue table, or ttest table.
A critical value of t defines the threshold for significance for certain statistical tests and the upper and lower bounds of confidence intervals for certain estimates. It is most commonly used when:
 Testing whether two means are significantly different (twosample t tests)
 Testing whether two variables are significantly related (linear regression or correlation)
 Calculating confidence intervals (of means or regression coefficients)
The critical values of t are calculated from Student’s t distribution. Student’s t distribution is the distribution of the test statistic t. The critical values of t are difficult to calculate by hand, which is why most people use a t table or computer software instead.
Student’s t table for one and twotailed tests
Use the tables below to find the critical values of t or learn how to use the t table
 Critical values of t for twotailed tests
 Critical values of t for onetailed tests
 Stepbystep guide to using the table
How to use the t table
If you need to find a critical value of t to perform a statistical test or calculate a confidence interval, follow this stepbystep guide.
Step 1: Choose twotailed or onetailed
Twotailed tests are used when the alternative hypothesis is nondirectional.
 A nondirectional hypothesis states that a population parameter (such as a mean or regression coefficient) is not equal to a certain value (such as 0). Twotailed tests are appropriate for most studies.
 If you’re calculating a confidence interval, choose twotailed.
Onetailed tests are used when the alternative hypothesis is directional.
 A directional hypothesis states that a population parameter is greater than or less than a certain value.
 Your alternative hypothesis is directional if it includes words such as “greater than,” “less than,” “increases,” “decreases,” or the “<” or “>” sign. If it doesn’t include these (or similar), it is probably nondirectional.
Step 2: Calculate the degrees of freedom
The degrees of freedom (df) of a statistic are calculated from the sample size (n). The equation you need to use depends on what type of test or procedure you’re performing.
Test or procedure  Degrees of freedom (df) equation 


df = n – 1 

df = n_{1} + n_{2} – 2
Where n_{1} is the sample size of group 1 and n_{2} is the sample size of group 2 

df = n – 1
Where n is the number of pairs 

df = n – 2 
Step 3: Choose a significance level
By convention, the significance level (α) is almost always .05. The α = .05 column is highlighted in the table since it is the most commonly used significance level.
In certain situations, you may want to decrease your risk of Type I error by decreasing α, or decrease your risk of Type II error by increasing α.
If you’re calculating a confidence interval, choose the significance level based on your desired confidence level:
α = 1 – confidence level
The most common confidence level is 95% (or .95, when expressed as a proportion), corresponding to α = .05.
Step 4: Find the critical value of t in the t table
Now that you know whether your test is twotailed or onetailed, the degrees of freedom (df), and the significance level, you have all the information you need to use the t table.
 If the test is twotailed or if you’re calculating a confidence interval, use the first table. If the test is onetailed, use the second table.
 The degrees of freedom (df) are listed along the left side of the table. Find the table row for the df you calculated in Step 2. If you need a df that isn’t listed, then round down to the next smallest number (e.g., use df = 40 instead of df = 46).
 The significance levels are listed along the top of the table. Find the column for the significance level that you chose in Step 3. In most cases, you will use the highlighted column (α = .05).
 The critical value of t for your test is found where the row and column meet.
Practice questions
Frequently asked questions about Student's t table
 How do I find the critical value of t in R?

You can use the qt() function to find the critical value of t in R. The function gives the critical value of t for the onetailed test. If you want the critical value of t for a twotailed test, divide the significance level by two.
 How do I find the critical value of t in Excel?

You can use the T.INV() function to find the critical value of t for onetailed tests in Excel, and you can use the T.INV.2T() function for twotailed tests.
 How do I test a hypothesis using the critical value of t?

To test a hypothesis using the critical value of t, follow these four steps:
 Calculate the t value for your sample.
 Find the critical value of t in the t table.
 Determine if the (absolute) t value is greater than the critical value of t.
 Reject the null hypothesis if the sample’s t value is greater than the critical value of t. Otherwise, don’t reject the null hypothesis.
 How do I calculate a confidence interval of a mean using the critical value of t?

To calculate a confidence interval of a mean using the critical value of t, follow these four steps:
 Choose the significance level based on your desired confidence level. The most common confidence level is 95%, which corresponds to α = .05 in the twotailed t table.
 Find the critical value of t in the twotailed t table.
 Multiply the critical value of t by s/√n.
 Add this value to the mean to calculate the upper limit of the confidence interval, and subtract this value from the mean to calculate the lower limit.
 Why is the t distribution also called Student’s t distribution?

The t distribution was first described by statistician William Sealy Gosset under the pseudonym “Student.”